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Computational Modeling of Axonal Microtubule Bundles under Tension
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California
ABSTRACT Microtubule bundles cross-linked by tau protein serve a variety of neurological functions including maintaining
mechanical integrity of the axon, promoting axonal growth, and facilitating cargo transport. It has been observed that axonal
damage in traumatic brain injury leads to bundle disorientation, loss of axonal viability, and cognitive impairment. This study
investigates the initial mechanical response of axonal microtubule bundles under uniaxial tension using a discrete bead-spring
representation. Mechanisms of failure due to traumatic stretch loading and their impact on the mechanical response and stability
are also characterized. This study indicates that cross-linked axonal microtubule bundles in tension display stiffening behavior
similar to a power-law relationship from nonaffine network deformations. Stretching of cross-links and microtubule bending were
the primary deformation modes at low stresses. Microtubule stretch was negligible up to tensile stresses of ~1 MPa. Bundle
failure occurred by failure of cross-links leading to pull-out of microtubules and loss of bundle integrity. This may explain the elon-
gation, undulation, and delayed elasticity of axons following traumatic stretch loading. More extensively cross-linked bundles
withstood higher tensile stresses before failing. The bundle mechanical behavior uncovered by these computational techniques
should guide future experiments on stretch-injured axons.
INTRODUCTION
Microtubule bundles cross-linked by microtubule-associ-
ated protein (MAP) tau are a major structural feature of
the axon, an elongated projection that conducts electrical
impulses away from the body of a neuron. These microtu-
bule bundles are located in the interior portion of the
axon, and alongside neurofilaments and a thin actin cortex
form the axonal cytoskeleton. A variety of neurological
functions are mediated by these bundles, including main-
taining mechanical integrity and shape of the axon, promot-
ing axonal growth, and facilitating cargo transport (1,2). The
morphology of axonal microtubule bundles cross-linked by
tau protein are in fact the main feature that distinguishes
axons from dendrites, another elongated neuronal projec-
tion, as shown in Fig. 1. Axonal microtubule bundles typi-
cally contain a density of microtubules of ~10–200
microtubules/mm2, yielding ~10–100 microtubules in
a typical cross section (3). It has been found that the average
length of these microtubules is ~4 mm in the axon of
cultured rat hippocampal neurons (4). Bundled microtubules
are arranged in polarized arrays (5), allowing for directed
fast transport of cargo such as amyloid precursor protein
along the axon via molecular motors attached to the micro-
tubules. Impaired transport of cargo such as amyloid
precursor protein can lead to focal accumulation in the
axoplasm, resulting in axonal swelling and beading (6).

In axons, microtubules are coated with MAP tau,
a natively unfolded filamentous protein abundant in the
central nervous system. The most common MAP present
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in the axon is MAP tau, the protein responsible for the
cross-linked structure of the axonal microtubule bundle
(see Fig. 1). Tau proteins have a typical molecular mass
between 50 and 75 kDa depending on the specific isoform
(7). Through complimentary dimerization with other tau
proteins, bridges are formed to nearby microtubules to
create bundles (8,9). These bundles formed by tau protein
in the axon have a typical edge-to-edge spacing of
~20 nm and are generally hexagonally packed (10).

Traumatic axonal injury is a characteristic feature of focal
and diffuse traumatic brain injury, characterized by local
disorientation of the axonal microtubule bundle, beading
of the axon, impaired axonal transport, retraction of the
synapse, and axonal degeneration (11–14). Traumatic
axonal injury has been studied through a number of in vitro
studies in which axons are subjected to traumatic stretch
injury. A recent study shows evidence of microtubule
rupture in the vicinity of axonal beads formed due to trau-
matic stretch injury (15). Microtubules have been shown
to rupture at strains of ~50% (16). It is also possible that
the cross-links formed by tau proteins are failing under trau-
matic loading, leading to loss of the bundled architecture.

The lateral reinforcement ofmicrotubules by cross-linking
to the cytoskeleton has been shown to enhance their ability to
bear compressive loads (17). Though microtubules are
conventionally regarded as bearing compressive loads, in
certain circumstances such as in traumatic stretch injury,
they are placed in tension. Experimental techniques have
yet to characterize the immediate mechanical behavior of
axonal microtubule bundles in tension. Computational
modeling techniques have been employed to investigate
the mechanical behavior of the filaments comprising the
cytoskeleton (18,19) and have been used to investigate
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FIGURE 1 Schematic of a neuron with an axon and dendrites. Microtu-

bules, represented by thick, black lines, are bundled by MAP proteins.

Bundle morphology is dependent on the bundling MAP. Right inset:

Axon showing microtubules cross-linked by tau protein (red). Left inset:

Dendrite showing microtubules cross-linked by MAP2 (blue). (Not drawn

to scale).

FIGURE 2 Schematic of the bundle filaments represented by a network

of beads connected by spring elements. Angular springs representing

bending stiffness are also included between microtubule elements (not

shown). (Not drawn to scale).
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cross-linked networks (20–22). These studies have empha-
sized the importance of the cross-link properties and
network/bundle geometry in the overall mechanical
behavior. Nonaffine behavior of cytoskeletal networks has
been characterized previously, whereby realignment of
network fibers leads to stiffening at high stresses (23,24). A
few studies have investigated the mechanics of cross-linked
squaremicrotubule bundles. Tolomeo et al. (25) used theoret-
ical and computational modeling to show that the shear
resistance provided by the cross-links greatly increases
microtubulebundlebendingstiffness. Furthermore, a theoret-
ical investigation by Bathe et al. (26) has characterized
distinct bundle bending stiffness regimes resulting from the
competition between filament stretching and cross-link
shearing. This study seeks to characterize the mechanical
behavior of axonal microtubule bundles in tension. The
model emphasizes relevance to axonal microtubule bundles
in tension by including hexagonal bundle architecture,
discontinuous microtubules, material parameter prediction
based on experimental data, and failure behavior. It is
proposed that axonal microtubule bundles exhibit nonlinear
mechanical behavior in tension due to nonaffine network
deformations. Furthermore, it is suggested that the mechan-
Biophysical Journal 102(4) 749–757
ical behavior of MAP tau is critical to the bundle tensile
response, and that MAP tau may fail under traumatic stretch
loading.
MATERIALS AND METHODS

Discrete element formulation

Discrete bead-spring models are often employed to model the mechanical

behavior of filaments and filamentous networks (20,27–29). In such

models, point masses interact via potentials representing various

phenomena such as elasticity, damping, and steric repulsion. A bead-spring

model of the axonal microtubule bundle allows for sufficient size and

complexity of the system with only modest computational demands. This

type of model also allows for the investigation of irregular, physiologically

accurate geometries; this is especially difficult in theoretical mechanics

studies. Previous studies have focused on bundles with continuous filaments

spanning the entire bundle length; this neglects the impact of discontinuities

on the mechanical properties of the bundles, which in all likelihood signif-

icantly decreases bundle stiffness, a consideration this study seeks to inves-

tigate. Discontinuities in microtubules can easily be incorporated and the

role of a variety of geometric and mechanical parameters can be investi-

gated. As a result of these considerations, a model of axonal microtubule

bundles can be developed that closely replicates physiological bundles

and has sufficient spatial and temporal detail.

Bead-spring models capture higher level deflections of the filaments,

such as bending and axial deflections, using interaction potentials between

beads that approximate the mechanical equations. Fig. 2 shows a schematic

of the representation of bundle filaments by a network of beads connected

by springs. The current model is concerned primarily with the mechanical

stretching of microtubules under a moderate force regime. These forces will

quickly stretch the microtubules past the entropic-dominated and into

a linear mechanical stretching regime, a transition characterized previously

(30). As such, a linearly elastic mechanical stretching potential was

employed between microtubule beads. Filament beads were connected by

linear springs with potential Vs of the form in the equation,
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Vs ¼ ks

�krk � l0
�2

2
; (1)

where ks is the spring constant, r is the separation distance, and l0 is the

unstretched length of the spring. The spring constant ks is related to the
material properties of the filament in the equation,

ks ¼ EA

l0
; (2)

where E is the Young’s modulus of the filament, A is the cross-sectional area

of the filament, and l0 is the unstretched bead spacing. The tau protein cross-
links were modeled as two-node linear spring elements, a representation

common to a number of cross-linked network models (26).

The bending potential was represented by a harmonic potential as a func-

tion of the bend angle q. The bending potential Vb therefore took the form in

the equation,

Vb ¼ kb
ðq� q0Þ2

2
; (3)

where kb is the bending spring constant, q is the angle between subsequent

elements, and q0 is the rest angle of the bend. The bending spring constant is

related to the material properties of the filament in the equation,

kb ¼ EI

l0
; (4)

where EI is the flexural rigidity of the filament and l0 is the unstretched bead

spacing. The flexural rigidity EI of a polymer is related to its persistence

length in the equation,

EI ¼ lpkBT; (5)

where lp is the persistence length, kB is the Boltzmann constant, and T is the

temperature.

Steric repulsion of the beads in the system was necessary to prevent pene-

tration of the beads on one microtubule into those of another. The potential

associated with the steric repulsion in such a coarse-grained model is only

meant to prevent penetration and the form is somewhat arbitrary. An expo-

nentially decaying potential VSR was used of the form shown in the

equation,

VSR ¼ ε0e
�krk=s0 ; (6)

where ε0 is the energy scaling parameter, r is the distance between sterically

interacting beads, and s0 is the steric radius. The steric radius was set to the

outer microtubule radius, 12.5 nm, and the energy scaling parameter was

iteratively selected to prevent penetration with minimal long-range effects.

A cutoff radius of 2.4 s0 was used to truncate the steric interaction for

computational efficiency while preventing filament penetration.
FIGURE 3 Example simulation geometry generated using in-house code.

Beads are drawn with a radius of 12.5 nm to show microtubules at the

correct width (the physical radii of beads are not important except in steric

repulsion). Elements between microtubule beads are not shown. Bundle

length is 8 mm, and microtubules are placed with a 20 nm edge-to-edge

spacing. Note the single randomly placed discontinuity in each row and

the random distribution of cross-links at a specified average spacing

(25 nm average shown).
Bundle geometry

Using in-house code, a hexagonal bundle of 19 rows with a center-to-center

microtubule spacing of 45 nm was created, to correspond to the desired

20 nm edge-to-edge spacing. Each row consisted of 8 mm of microtubule

length with one discontinuity; this created 38 separate microtubules with

an average continuous microtubule length of 4 mm. It was made certain

that discontinuities were not placed too close to the edges of the bundle

by restricting discontinuities to the central 80% of each row. An arbitrary

gap length of 150 nm was used at the discontinuity in each row. A represen-

tative bundle generated using this method is shown in Fig. 3. The microtu-

bule bead spacing was set to 10 nm to sufficiently resolve bending between
cross-links. A discretization study was performed, and elastic energy

storage behavior was shown to converge at this 10 nm spacing.

Cross-links were distributed between neighboring microtubules

throughout the bundle based on desired average cross-link spacing. The

tau cross-link bead mass was added to the mass of beads where cross-

link elements were added. The number of cross-links NCL in the computa-

tional bundle was calculated to provide an average cross-links spacing dCL
of 25, 50, 75, or 100 nm in the equation,

NCL ¼ NMTLMT

dCL
; (7)

where NMT is the number of microtubules, and LMT is the average contin-

uous microtubule length. The number of microtubules NMT and average

continuous microtubule length LMT were 38 and 4 mm, respectively.
Simulation procedure

The velocity Verlet algorithm was used to calculate bead trajectories over

the duration of the simulations. The interaction force Fji is calculated

from the interaction potential in the equation,

Fji ¼ �VV
�
rij
�
; (8)

where V is the interaction potential and rij is the vector from bead i to bead j.

Brownian forces were not considered in the model due to the high persis-

tence length of microtubules and dominance of mechanical stretch defor-

mations. Brownian effects would have a much greater significance in the

entropic stretch range, and should not significantly contribute to the

stress-strain behavior in the mechanical stretch regime.
Biophysical Journal 102(4) 749–757



TABLE 1 Material parameters used to calculate simulation

parameters

Parameter Value Source

Microtubule Young’s

modulus, EMT

1.5 GPa Pampaloni et al. (30)

Microtubule persistence

length, lMT
p

420 mm Pampaloni et al. (30)

Microtubule flexural

rigidity, (EI)MT

1.8 � 10�24 Nm2 Pampaloni et al. (30)

Tau cross-link Young’s

modulus, ECL

5.0 MPa Estimate

Microtubule element

length, lMT
0

10 nm

Tau cross-link element

length, lCL0

45 nm

Microtubule axial spring

constant, kMT
s

47.1 N/m Calculated, Eq. 2

Microtubule bending spring

constant, kMT
b

1.8 � 10�16 Nm Calculated, Eq. 4

Tau cross-link axial spring

constant, kCLs

3.925 � 10�2 N/m Calculated, Eq. 2

Microtubule bead

mass, mMT

1.48375 � 10�21 kg

Tau cross-link bead

mass, mCL

2.0 � 10�22 kg

Microtubule resistance

coefficients, CMT
n ;CMT

t

2.1191, 1.2700

Tau cross-link resistance

coefficients, CMT
n ;CMT

t

5.9555, 4.9181
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An axial tensile stress was applied by distributing forces to the ends of

the microtubules at either end of the bundle. This tensile stress is meant

to represent the stress on the microtubule bundle itself and not necessarily

that of the whole axon. These two quantities may not be equal based on the

load sharing between all structural components of the axon. Total tensile

force was first calculated by multiplying the desired tensile stress by the

total cross-sectional area of the 19 microtubule ends. This force was then

divided evenly among the end beads of the microtubules. The total applied

force was ramped to its maximum value over the first 10% of the simula-

tions to prevent excessive oscillations. The energy scaling parameter in

Eq. 6 was set to 1 � 10�18 Nm to prevent penetration of beads in neigh-

boring microtubules. In-house code written in FORTRAN was used to inte-

grate the equations of motion and calculate bead trajectories. A time step of

0.1 ps was used for stability and computational efficiency. The steady-state

strain values at a given tensile stress were calculated by allowing the bundle

to come to rest in a dynamic simulation. A small numerical damping of

bead velocities was included in simulations to prevent excessive oscilla-

tions and dissipate kinetic energy. This numerical damping allowed the

bundle to come to rest when the elements carried enough elastic energy

to resist the tensile stress.

In dynamic simulations of failure, a modified predictor-corrector velocity

Verlet algorithm with resistance coefficients to simulate drag on elements

was used. Critical strain criteria were enforced for elements; upon reaching

this critical strain, elements were deleted from the simulation. For microtu-

bule elements, the critical strain was set at 0.5 based on experimental

measurements of the rupture strain (16). The critical strain of the tau

cross-links was set to 1.0, corresponding approximately to the jump-out

length from a study on tau dimerization by Rosenberg et al. (9). This crite-

rion represents the length at which the tau protein dimers can no longer

maintain a bridge between neighboring microtubules.

Time step, Dt 0.1 ps

Steric energy scaling

parameter, ε0

1 � 10�18 Nm

Steric radius, s0 12.5 nm
Material parameters

Experimental data from a number of studies were used to assign values to

the spring constants in the harmonic potential functions represented by Eqs.

1–6. The values of the parameters used in the study are shown in Table 1 and

their derivation are detailed in this section. Values were chosen to fall

within the observed physiological range of axonal microtubule bundles.

Measured values of the elastic modulus of microtubules are in the range

of hundreds of MPa to a few GPa. A thorough study of the anisotropic

mechanics of microtubules that agreed well with experimental data was per-

formed by Pampaloni et al. (31). Avalue of 1.5 GPa was used for the micro-

tubule Young’s modulus EMT, which falls within the typical range of

reported values and corresponds with the Pampaloni study (31). This study

also predicted a length-dependent persistence length lp of microtubules.

Based on a microtubule length of 4 mm, a persistence length of 420 mm

was predicted. Using Eq. 5 and this persistence length, a microtubule flex-

ural rigidity (EI)MT of 1.8 � 10�24 Nm2 was obtained.

Studies of the mechanical properties of single dimerized tau cross-links

are unavailable, so an estimate of the Young’s modulus had to be obtained.

By estimating a persistence length of tau dimers on the order of a micron

and using Eq. 5, a Young’s modulus of tau protein cross-links ECL of 5.0

MPa was used. The estimation of this parameter is further complicated

because the stretching mode of the cross-link is unclear; stretching of the

tau filaments, the tau-tau bond, or the tau-microtubule bond are all candi-

dates. As such, this value is decidedly approximate, but the qualitative

bundle behavior should not be significantly altered unless the true modulus

is incorrect by multiple orders of magnitude.
Study design

Using realistic bundle geometries created using in-house FORTRAN code,

the stress-strain and failure behavior of axonal microtubule bundles were

investigated. The parameter under investigation, the average cross-link

spacing, was investigated at levels of 25, 50, 75, and 100 nm. These levels
Biophysical Journal 102(4) 749–757
of average cross-link spacing correspond to values typical of the estimated

physiological range. However, no explicit data are available regarding the

average cross-link spacing in vivo. As such, the estimated range was based

on images of axonal microtubule bundles cross-linked by MAP tau. This

parameter study allowed for the investigation of the effects of increasing

the degree of bundling, corresponding to the density of cross-link bridges

on a given length of microtubule. At each level of average cross-link

spacing, five computational bundles were generated by randomizing the

locations of cross-links and discontinuities in each row. These five config-

urations allowed for statistical significance and prevented skewing the

results toward a particular configuration’s response. These bundles were

then subjected to uniaxial stress parallel with the bundle axis at levels of

1 kPa, 10 kPa, 100 kPa, 1 MPa, and 10 MPa, and the bundle strain was

calculated in each case. Failure simulations were performed with one

computational bundle at each average cross-link spacing at tensile stresses

from 10 to 600 MPa.
RESULTS AND DISCUSSION

Bundle steady-state stress-strain behavior

A total of 100 simulations were performed to determine the
steady-state bundle stress-strain behavior at each level of
cross-link spacing. The simulated bundles came to rest at
a steady-state configuration within simulation durations of
2 ms. The results of these simulations are plotted in
Figs. 4 and 5 (for data, see Table S1 in the Supporting Mate-
rial). These simulation results clearly show strain-stiffening
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FIGURE 4 Steady-state bundle stress-strain curves in tension. Error bars

representing the standard error are shown. Curves are shown for 25 nm

(solid line), 50 nm (dashed line), 75 nm (dash dotted line), and 100 nm

(dotted line) average cross-link spacing. The stress-strain response of

continuous bundles (without discontinuities) is shown as the gray dashed

line, where the entirety of the load is carried by microtubule stretching.

Strain stiffening behavior of the bundle response is evident due to nonaffine

network deformations.
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behavior of the axonal microtubule bundles. The stress-
strain behavior of the bundles with the densest distribution
of cross-links, at 25 nm average spacing, is well represented
(R2¼ 0.9963) by a power-law fit of the form in the equation,
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s ¼ �
3:65 � 1013

�
ε
2:82; (9)

where s is the tensile stress in Pa and ε is the bundle strain.
The cases with lower densities of cross-links are not well

represented by basic power-law fits, suggesting a more
complicated stress-strain relationship.

The complex stiffening behavior displayed by the bundles
is especially interesting given that the spring elements are
all linearly elastic. Nonaffine bundle deformations and
varying load sharing between elastic storage modes are
responsible for this effect. Graphs depicting the energy
storage in the different elastic modes, microtubule stretch,
microtubule bending, and cross-link stretch, are shown in
Fig. 4 (for data, see Table S1). Energy associated with steric
repulsion is not included and is only significant in the
10 MPa simulations. At small deformations, cross-links
rotate leading to lateral forces on microtubules. As a result,
the elastic energy is shared primarily between the cross-link
stretch and microtubule bending storage modes. In fact,
microtubule stretch contributes <5% of the energy storage
up to a tensile stress of 1 MPa (see Table S1). It is important
to note that these nonaffine deformations are a result of the
microtubule discontinuities within the bundle; idealized
parallel continuous rows would carry the entirety of the
elastic energy in microtubule stretch at any strain level. In
bundles with a higher cross-link density, cross-link stretch
stores a larger portion of the elastic energy compared to
microtubule bending (see Fig. 4). It was observed that at
high stress, the microtubules begin to shift toward the
bundle centerline and straighten out, causing the energy
stored in microtubule stretch to drastically increase while
the microtubule bending energy significantly decreases.
Furthermore, at high stress the cross-links carry more elastic
10
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10
6

10
7

Stress, Pa

FIGURE 5 Steady-state energy sharing curves

of elastic energy storage modes. Curves are shown

for 25 nm (solid line), 50 nm (dashed line), 75 nm

(dash dotted line), and 100 nm (dotted line)

average cross-link spacing. From left to right:

percentage of energy stored in microtubule

bending, percentage of energy stored in microtu-

bule stretching, percentage of energy stored in

cross-link stretching. Microtubule stretching

contributes <5% of the elastic energy storage up

to a tensile stress of 100 kPa.
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energy because they have rotated into closer alignment with
the bundle axis. Steric repulsion became extremely signifi-
cant in the 10 MPa simulations, indicating that the bundle
had tightened near to the steric limit. Given that the formu-
lation of the steric repulsion is not strictly physically accu-
rate; the results of the simulations in this steric regime
should be interpreted with caution. If accurate, this tight-
ening behavior may have implications relating to in vivo
bundle behavior; tau proteins on the microtubule surface
have been suggested to serve as steric brushes preventing
full bundle collapse and resisting microtubule sliding (32).

These results predict that axonal microtubule bundles are
relatively compliant at smaller loads. In such a situation, the
bundle network simply reconfigures itself with microtubules
experiencing negligible mechanical stretch. At higher loads,
the bundle becomes stiffer in tension to effectively resist
large axonal deformations. Mechanical stretching of micro-
tubules becomes significant and the bundle tightens toward
its centerline.
Bundle dynamics and failure

Bundle response dynamics and failure were investigated to
examine the acute mechanical events of stretch loading.
Hydrodynamic damping was enforced by modeling ele-
ments as cylinders moving through a stationary viscous
fluid. Bundles with average cross-link spacing of 25, 50, 75,
and 100 nm were subjected to tensile stresses between 10
and 600 MPa. Critical strain criteria of 0.5 for microtubule
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FIGURE 6 Bundle strain dynamics at 50 MPa tensile stress. Curves are

shown for 25 nm (solid line), 50 nm (dashed line), 75 nm (dash dotted

line), and 100 nm (dotted line) average cross-link spacing. Steady-state

bundle strains are reached in 1–2 ms.
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elements and 1.0 for cross-links were enforced. Catastrophic
bundle failure was characterized by the initiation of rapidly
increasing element failure and bundle length. Steady-state
bundle strains were reached in 1–2 ms in simulations where
failure was not evident, as shown in Fig. 6. Failure was
evident at 500, 300, 200, and 200 MPa for average cross-
link spacing of 25, 50, 75, and 100 nm, respectively, as
shown in Fig. 7. This indicates that more extensively
cross-linked bundles can withstand higher tensile stresses
before failing. These simulations showed bundle failure
occurring entirely by failure of the cross-links with the
microtubule elements remaining intact. This mode of bundle
failure, which shall be referred to as microtubule pull-out, is
characterized by failure of the cross-links leading to the
microtubules being pulled past one another and out of
a tightly bundled configuration. Fig. 8 shows a simulated
microtubule bundle undergoing pull-out due to cross-link
failure. Pull-out of microtubules may explain the significant
elongation of axons following traumatic stretch seen in
experiments. With the failure of the cross-linked architec-
ture and elongation of the bundle, previous studies (26)
predict a reduced bundle bending stiffness. Axonal undula-
tions observed following traumatic stretch injury are
perhaps a result of these combined effects. The new distribu-
tion of the microtubules in the axon would take time to be
rearranged back into a tightly bundled configuration,
FIGURE 7 Catastrophically failing microtubule bundle showing micro-

tubule pull-out. Average cross-link spacing is 50 nm, and the applied tensile

stress is 300 MPa. Element failure was monitored, indicating only failure of

cross-link elements. Tightening of the bundle toward the centerline is also

evident. Simulation times are 0 ms (top), 1.25 ms (middle), and 5 ms

(bottom). (Scale bar ¼ 1 mm).
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and cross-link critical strain failure criteria enforced. Strain values at the

initiation of failure are indicated by an x. Curves are shown for 25 nm (solid

line), 50 nm (dashed line), 75 nm (dash dotted line), and 100 nm (dotted

line) average cross-link spacings. Lower cross-link densities resulted in

catastrophic bundle failure at lower stress and strain values.
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providing a possible explanation of the delayed elasticity of
injured axons.

These observations do not explain the evidence of
microtubule breakage seen in some experiments. Evidence
of microtubule rupture, characterized by catastrophically
depolymerizing microtubules, has been observed in the
areas of axonal swellings in a study by Tang-Schomer
et al. (15). Furthermore, an interesting experimental
observation has been made that axons contain a range of
short and long microtubules (4,33); one might suspect
that different length classes of microtubules may have
different mechanical responses. One would suspect longer
microtubules in vivo are more extensively anchored (34)
and less likely to experience pull-out which may lead to
rupture. Additionally, the more extensive coating of tau
protein on longer microtubules would lead to a higher
resistance to the sliding seen in microtubule pull-out.
Rupture of these long microtubules in conjunction with
pull-out may explain the impaired transport leading to
the formation of axonal beads, but this association would
need to be investigated further.

The observations from the failure simulations lead to
a general hypothesis about the primary mechanical events
in the axonal microtubule bundle due to traumatic stretch
injury. Under traumatic loading, tau cross-links may fail
leading to microtubule pull-out where microtubules slide
past one another. Longer, heavily anchored microtubules
may be ruptured leading to catastrophic depolymerization.
The axonal microtubule bundle attains an elongated,
structurally weakened configuration leading to acute
axonal elongation, undulation, and potentially axonal
beading. Cellular biochemical events may then lead to
repair of the microtubule bundle or complete degeneration
of the axon.
Limitations of the model

The current model has a number of limitations that should
be carefully considered. Assumptions were necessary to
minimize computational expenses, and led to a model
best suited for tensile loading. The elements in the system,
both microtubule and tau cross-link, were assumed to
follow a linear elastic constitutive relationship. This
assumption is less valid in an entropic stretching regime,
in compressive loading, and potentially in a high force
regime. Simulations were performed with no Brownian
motion considered. Anchoring of the bundle to the rest of
the cytoskeleton, such as the neurofilaments network and
the actin cortex, was not considered. Chemical dynamics
were not considered, and as such, the effects of the poly-
merization and depolymerization of microtubules and the
formation and dissociation of cross-links were neglected.
The material parameters of the microtubules are based on
currently available experimental results and the elastic
modulus of the cross-links is an approximation. The sensi-
tivity of the model to relevant system parameters is detailed
in Appendix A. Future work will seek to improve the accu-
racy of the model by relaxing some of these assumptions
and considering more of the related biochemical
phenomena.
CONCLUSION

The primary mechanical events in axons experiencing trau-
matic loading are complex and difficult to investigate exper-
imentally. This study has demonstrated the suitability of
discrete computational models in investigating the mechan-
ical behavior of cross-linked axonal microtubule bundles
under tensile loading. Simulations were performed with
loads in normal physiological and traumatic ranges.

The computational bundles displayed strain-stiffening
behavior due to nonaffine deformation of the bundle
network. At low stress, the tensile load was carried by the
cross-links and microtubule bending. At high stress, the
bundle began to tighten toward its centerline and microtu-
bule stretch became significant. Failure of axonal microtu-
bule bundles was also investigated using dynamic
simulations with critical strain criteria for the elastic
elements. Catastrophic bundle failure was observed due to
failure of cross-links. This resulted in pull-out of the micro-
tubules, whereby cross-links failed and microtubules were
able to slide past one another leading to bundle elongation
and weakening. This effect may explain experimentally
Biophysical Journal 102(4) 749–757
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observed axonal elongation and undulations following trau-
matic stretch injury. Microtubule rupture was not evident in
dynamic simulations.

Previous studies have indicated that mechanical tension
facilitates growth of the axon; this may well be associated
with tensile loading of the microtubule bundle and subse-
quent growth. A combined mechanical and biochemical
study of normal physiological and traumatic loading, as
well as the downstream effects of such loading, would be
particularly useful for studying axonal growth, mechanical
stability, and injury. Furthermore, the mechanical properties
of tau protein cross-links should be accurately described due
to their suggested mechanical importance as evidenced by
this study. Using computational and experimental tech-
niques in symphony, it will indeed be possible to form
a better understanding of the mechanical and biochemical
behavior of axons under tensile loading.
APPENDIX: SENSITIVITY ANALYSIS

Sensitivity analysis was performed by varying the microtubule bending

stiffness, microtubule elastic modulus, cross-link elastic modulus, and

cross-link length. These parameter values were increased and decreased

by 5%, 10%, and 50%. Simulations were performed with an average

cross-link spacing of 50 nm and a tensile stress of 1 MPa, meant to represent

intermediate simulation conditions. The resulting percent changes in the

steady-state strain, percentage of energy stored in microtubule bending,

percentage of microtubule stretching, and percentage of cross-link stretch-

ing were calculated (Fig. 9). It is evident that the model is not very sensitive

to modest changes in the system parameters. This suggests that the model is

applicable and the results are acceptable given parameter estimates with

reasonable agreement to true physiological values.
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FIGURE 9 Sensitivity plots of the steady-state bundle response to system

parameters. System parameters that are varied include microtubule bending

stiffness (solid line), microtubule elastic modulus (dashed line), cross-link

elastic modulus (dash dotted line), and cross-link length (dotted line).

Response sensitivity is monitored for percent change in bundle strain (top

left), percentage of energy stored in microtubule bending (top right),

percentage of energy stored in microtubule stretching (bottom left), and

percentage of energy stored in cross-link stretching (bottom right). The

model shows relatively low sensitivity to modest changes in system param-

eters, lending confidence to the conclusions.
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SUPPORTING MATERIAL

A table is available at http://www.biophysj.org/biophysj/supplemental/

S0006-3495(11)05452-X.
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